首页> 外文OA文献 >Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images
【2h】

Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images

机译:贝叶斯框架激发了脑部mRI图像的无参考感兴趣区域质量测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions.
机译:我们描述了脑磁共振成像(MRI)图像的基于属性的采集后评估方法。它基于贝叶斯理论在熵和图像质量属性之间的关系的应用。切片的熵特征图像被分割为低熵和高熵区域。对于每个熵区域,分别有三个对比度,标准偏差和清晰度质量属性的观察值。质量属性的质量指标是在特征图像中观察到质量属性的任何对应区域的情况下,熵区域的后验概率。根据切片的归一化总集团势能(TCP)能量确定每个熵区域的先验信念。对于低于预定义阈值的TCP,该区域的先验概率由其切片中的百分比成分与由Alzheimer疾病神经影像计划组织提供的250 MRI体积数据建立的标准正态分布的偏差来确定。对于高于阈值的TCP,先验是使用数学模型计算的,该数学模型描述了脑部MRI图像中TCP噪声水平的关系。我们提出的方法评估每个熵区域和全局图像的图像质量。实验结果表明,对于不同类型和水平的质量畸变,放射科医生的主观意见具有良好的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号